Leçon n°105

Groupe des permutations d'un ensemble fini. Applications.

Si vous souhaitez participer à l'enrichissement de cette page (ajouts de plans, développements ou suggestions), vous pouvez poster un commentaire.

Propositions de plans

  • Proposition n°1 (par Vidal Agniel)
  • Développements possibles

    Dernier rapport du jury (2017)

    Parmi les attendus, il faut savoir relier la leçon avec les notions d’orbites et d’actions de groupes. Il faut aussi savoir décomposer une permutation en cycles à supports disjoints, tant sur le plan théorique (preuve du théorème de décomposition), que pratique (sur un exemple). Il est important de savoir déterminer les classes de conjugaisons du groupe symétrique par la décomposition en cycles, d’être capable de donner des systèmes de générateurs. L’existence du morphisme signature est un résultat non trivial mais ne peut pas constituer, à elle seule, l’objet d’un développement. Les applications sont nombreuses, il est très naturel de parler du déterminant, des polynômes symétriques ou des fonctions symétriques des racines d’un polynôme. S’ils le désirent, les candidats peuvent aller plus loin en s’intéressant aux automorphismes du groupe symétrique, à des problèmes de dénombrement, aux représentations des groupes des permutations ou encore aux permutations aléatoires.

    Commentaires